

1 Welcome, Agenda & Introductions

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

Agenda

Time	Agenda Item	Presenter
3:00 p.m.	1. Welcome, Agenda, & Introductions	Stacey Hobart
3:05 p.m.	2. COI Declarations	Stacey Hobart
3:10 p.m.	3. RFI #2 Submissions: Stage 1 Scoring & Prioritization	Rick Dunn & Jennifer Barnes
4:55 p.m.	4. Public Comment	
5:00 p.m.	Adjourn	

Phone participants will be muted throughout the meeting and can raise their hand during the public comment period to be unmuted.

Recruitment Updates

Evaluation Advisory Board

Members have been selected; announcement will come at the end of September after we have confirmed acceptance

Equity Sounding Board

Recruitment kicks off on Oct. 7-25

2 COI Declarations

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

MTAB Declaration of COI

MTAB Eligibility

Can't receive funding from CalMTA or be in pursuit of funding

Recusal Requirements

- Can't bid on RFP/RFQ if giving input after Phase I
- Those with a competitive interest can recuse from discussion, but must leave MTAB if responding to RFP
- Agree not to influence remaining MTAB
- Interpretation, if needed, done by CPUC staff

Transparency

Public meetings & process where COI concerns can be raised by the public

CalMTA COI Policies

- The CalMTA program has robust COI policies to ensure decision-making is transparent, impartial, and unbiased.
- Resource Innovations employees and subcontractors who function in decision-making roles for CalMTA are firewalled from any ongoing work with California utilities or other covered entities and sign COI certifications.
- CalMTA seeks CPUC approval when there is a need to draw on specialized expertise from subject matter experts who also support work with covered entities.

3 RFI Submissions: Stage 1 Scoring & Prioritization

Rick Dunn, Resource Innovations Jennifer Barnes, 2050 Partners

Meeting objectives

- Review the scoring team process & discuss recommendations for MT ideas to advance to Stage 2 scoring
- Secure MTAB input on scoring team recommendation for five ideas to score in Stage 2 of RFI 2

Reminder about the scoring process

Threshold Review

Does it save energy? Is it commercially available? Is there enough information to be scored?

Stage 1

Scores based on expertise and easily accessible information

Stage 2

Scores based on calculated values for TSB & TRC/PAC

We are here

The scoring process was the same as the first RFI:

- Team aligned on key parameters
- Each idea was scored individually
- The team then discussed & agreed on a single, final Stage 1 score

Reminder about scoring criteria

Category	Criteria
Total System Benefit (TSB)	Energy TSB
A single metric that encompasses energy savings, grid benefits and reliability, and	Grid Benefits TSB
GHG impacts (Stage 2)	GHG Impacts TSB
Product Readiness An indicator of the supply chain maturity/product availability	Readiness
Participant Cost/Cost-effectiveness Assesses the overall estimated cost of the MTI against its benefits	Participant Cost (Stage 1) PAC & TRC (Stage 2)
ESJ Impacts (Equity)	Beneficial Impacts to ESJ Communities
Assesses whether the MTI will provide beneficial impacts to ESJ communities or leverage existing community resources in its execution	Partnership Opportunities with ESJ Communities
Non-energy Impact Captures the benefits or impacts (in addition to energy savings and greenhouse gas emissions reductions) that the MTI will deliver	Non-energy Impacts
MT Alignment	Innovation Characteristics
Ensures MTI aligns with key aspects of MT theory; presents a strong MT	Leverage Points
opportunity	Sustained Benefits

Stage 2 selection process

- Used guidance from MTAB & decision priorities to recommend five ideas to advance to Stage 2 scoring
- Ideas ranked & reviewed both by final weighted score & TSBweighted score
- Team assessment of ramp rate & other key drivers also considered

Disposition of new & carried forward ideas

13
New ideas submitted
2024 RFI

3 archived at threshold
2 similar to existing MT ideas
2 combined with ideas from
2023 RFI

6 remaining (scoring review)

2 combined

20 Ideas from 2023 RFI to be reconsidered in 2024 RFI 20 remaining (12 used 2023 RFI scores) (8 scored in 2024 RFI)

26
Scored ideas
reviewed and
prioritized in 2023
RFI - Stage 1

12
Highest-scoring ideas

Highest scoring ideas weighted by TSB

Idea Name	Weighted Score	"TSB" High	"TSB" High & MT Alignment
0085 Combination Heat Pumps	8.11	9.51	8.50
0218 Sustainable Outdoor Lighting	6.78	8.86	8.38
0118 Very High Efficiency Dedicated Outdoor Air System (DOAS)	6.51	8.56	7.00
0133 Thermal Energy Storage as a Distributed Energy Resource	6.60	8.17	6.87
0188 Reflective Insulation for Windows		7.48	6.21
0024 Variable Frequency Drives (VFDs) on all Pumps and Fans > 10 HP	7.32	7.45	7.21
0142 Agricultural Irrigation as a Flexible Demand Load	6.81	7.41	5.96
0193 Building Performance Standards (BPS) Accelerator	7.30	7.37	7.62
0080 Smart Electric Panels	6.44	7.28	6.08
0022 Smart Home	7.14	7.02	6.21
0010 High Performance Windows	7.51	6.14	6.96
0222 Residential Smart-Splitting	5.49	6.08	4.83

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

IDEA-0085 Combination Heat Pumps

Description

Integrates water heating, space heating, and space cooling into one combined, three-function heat pump system for residential use. These systems can also store some amount of thermal energy for use at a later time.

Portfolio Priorities		
	Equity	
×	WE&T	
×	Energy Savings	
×	Grid Benefits	
\boxtimes	GHG Reductions	

IDEA-0085 Combination Heat Pumps

Stage 1 Scoring Assumptions

Sector(s)	Residential SF & MF
End Use(s)	Space & water heating
Decision Type(s)	Normal replacement & new construction
Baseline	NR: Gas furnace & gas WH NC: space HP & HPWH

Recommendation Rationale: Two manufacturers already in the market and gaining traction in new construction; offers a quicker path to CARB NOx compliance

Weighted Score	8.11
TSB	
Energy Savings	High
Grid Benefits	High
GHG Impacts	High
MT Alignment	
Innovation Characteristics	3
Leverage Points	4
Sustained Benefits	4

IDEA-0218 Sustainable Outdoor Lighting

Description

Combines a typical outdoor light fixture with a solar panel, battery, and smart controller. The smart controller decides when to use battery power and when to draw from the grid. Typically, the battery is sized to be charged predominantly by the solar panel during the day.

Portfolio Priorities		
	Equity	
×	WE&T	
×	Energy Savings	
×	Grid Benefits	
×	GHG Reductions	

IDEA-0218 Sustainable Outdoor Lighting

Stage 1 Scoring Assumptions

Sector(s)	Commercial, MF & municipality parking lot lighting & streetlights (any lighting on a pole, no matter who owns it)
End Use(s)	Outdoor lighting
Decision Type(s)	Retrofit
Baseline	Existing

Recommendation Rationale: High incremental cost that is unlikely to come down significantly

Weighted Score	6.78
TSB	
Energy Savings	High
Grid Benefits	High
GHG Impacts	High
MT Alignment	
Innovation Characteristics	4
Leverage Points	4
Sustained Benefits	3

IDEA-0118 Very High Efficiency DOAS

Description

Use high efficiency heat recovery combined with a high-performance heat pump as an HVAC system approach which result in significant commercial sector energy savings potential.

Portfolio Priorities		
	Equity	
X	WE&T	
	Energy Savings	
X	Grid Benefits	
\boxtimes	GHG Reductions	

IDEA-0118 Very High Efficiency DOAS

Stage 1 Scoring Assumptions

Sector(s)	Commercial, schools & high-rise MF
End Use(s)	HVAC
Decision Type(s)	New construction or major renovation
Baseline	RTU with no DOAS

Recommendation	Rationale:	Closely	related t	. O.
ERTU				

Weighted Score	6.51
TSB	
Energy Savings	Medium
Grid Benefits	High
GHG Impacts	High
MT Alignment	
Innovation Characteristics	4
Leverage Points	2
Sustained Benefits 4	

IDEA-0133 Thermal Energy Storage as a Distributed Energy Resource

Description

Proposes using thermal energy storage as a distributed energy resource at commercial sites that traditionally have the highest energy intensities like hospitals, grocery stores, and refrigerated warehouses.

Portfolio Priorities	
	Equity
	WE&T
	Energy Savings
X	Grid Benefits
X	GHG Reductions

IDEA-0133 Thermal Energy Storage as a Distributed Energy Resource

Stage 1 Scoring Assumptions

Sector(s)	Commercial & industrial buildings with refrigeration loads
End Use(s)	Refrigeration
Decision Type(s)	New construction & add-on equipment
Baseline	No TES system

Weighted Score	6.60
TSB	
Energy Savings	Low
Grid Benefits	High
GHG Impacts	High
MT Alignment	
Innovation Characteristics	3
Leverage Points	3
Sustained Benefits	4

Recommendation Rationale: Market-ready & an established supply chain

IDEA-0188 Reflective Insulation for Windows

Description

Reflective Insulation for Windows is designed to keep building interiors cool without interfering with the occupants' views by blocking infrared light reducing solar heat gain by 50% in turn reducing summer cooling load.

Portfolio Priorities	
	Equity
\boxtimes	WE&T
\boxtimes	Energy Savings
	Grid Benefits
	GHG Reductions

IDEA-0188 Reflective Insulation for

CalMTA

Windows

Stage 1 Scoring Assumptions

Sector(s)	Commercial & residential (SF & MF)
End Use(s)	Envelope
Decision Type(s)	Add-on equipment
Baseline	Single-pane window with no reflective material

Recommendation Rationale: Already have a windows MTI

Weighted Score	7.09
TSB	
Energy Savings	High
Grid Benefits	Medium
GHG Impacts	Medium
MT Alignment	
Innovation Characteristics	4
Leverage Points	3
Sustained Benefits	2

IDEA-0024 VFDs on all Pumps and Fans > 10 HP

Description

Would promote the adoption of variable frequency drives on applicable pump and fan motors greater than 10 horsepower in both industrial and commercial applications. The initiative would leverage the Power Index, which is a ratio of rated power over baseline power, to calculate the energy savings from adding a variable speed drive to a motor-driven system.

Portfolio Priorities	
	Equity
X	WE&T
\boxtimes	Energy Savings
	Grid Benefits
	GHG Reductions

IDEA-0024 VFDs on all Pumps and Fans >

10 HP

Stage 1 Scoring Assumptions

Sector(s)	Commercial & industrial, some municipal & agriculture
End Use(s)	Non-embedded water pumping (food and beverage production), circulators, ventilation fans, hot water circulation (multifamily), office (hot water circulation: bathrooms & dishwashers)
Decision Type(s)	Add-on equipment or new construction
Baseline	No VFD or uncontrolled motor

Recommendation Rationale: NEEA has been	
working on this since 2019, but market uptake is	
unclear. May require new approaches	

Weighted Score	7.32
TSB	
Energy Savings	High
Grid Benefits	Medium
GHG Impacts	Medium
MT Alignment	
Innovation Characteristics	4
Leverage Points	4
Sustained Benefits	3

IDEA-0142 Agricultural Irrigation as a Flexible Demand Load

Description

This initiative would support a new, patented agricultural irrigation technology called Virtual Water Table Irrigation system. This new technology and cuts irrigation water consumption by 80% and an equal amount of power consumption from well pumping, booster pumps and canal transportation pumps.

Portfolio Priorities	
	Equity
	WE&T
×	Energy Savings
	Grid Benefits
	GHG Reductions

IDEA-0142 Agricultural Irrigation as a Flexible Demand Load

Stage 1 Scoring Assumptions

Sector(s)	Agricultural
End Use(s)	Agricultural irrigation
Decision Type(s)	Accelerated replacement
Baseline	 Existing, force flow pumped irrigation: 25% fossil fuel pump (diesel, propane or other) 75% electric pump

Recommendation Rationale: TSB is high but not well aligned with MT; only one player in the market

Weighted Score	6.81
TSB	
Energy Savings	High
Grid Benefits	Medium
GHG Impacts	Medium
MT Alignment	
Innovation Characteristics	3
Leverage Points	3
Sustained Benefits	2

IDEA-0193 BPS Accelerator

Description

Building Performance Standards (BPS)
Accelerator MTI would encourage cities to adopt BPS policies which target existing building stock and improve efficiencies either through a prescriptive design or an energy use intensity benchmark.

Portfolio Priorities	
	Equity
	WE&T
X	Energy Savings
	Grid Benefits
\boxtimes	GHG Reductions

IDEA-0193 BPS Accelerator

Stage 1 Scoring Assumptions

Sector(s)	Commercial buildings
End Use(s)	Potentially all end uses
Decision Type(s)	Normal/early replacement & add-on equipment
Baseline (savings)	Current commercial building stock with no BPS

Recommendation Rationale: Efforts underway at the local and state levels. Once passed, it would catalyze the adoption of other MTIs (such as CRAWS)

Weighted Score	7.30
TSB	
Energy Savings	High
Grid Benefits	Low
GHG Impacts	High
MT Alignment	
Innovation Characteristics 2	
Leverage Points	4
Sustained Benefits	5

IDEA-0080 Smart Electric Panels

Description

A smart panel is an electric panel with integrated or add-on software controls, generally in the form of relays, that provide a user with additional information and power-management capabilities beyond a traditional panel.

Smart panels are capable of shutting down all non-critical loads, communicating circuit-level consumption, facilitating strategic participation in DR programs, limiting whole-home demand by preventing coincident demand from appliances, managing appliances, and enables electrification by allowing addition of loads in excess of rated panel capacity.

Portfolio Priorities	
	Equity
	WE&T
	Energy Savings
×	Grid Benefits
	GHG Reductions

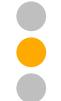
IDEA-0080 Smart Electric Panels

Stage 1 Scoring Assumptions

Sector(s)	SF & MF Residential
End Use(s)	Space & water heating, major appliances
Decision Type(s)	Normal replacement & new construction
Baseline	Assumes "dumb" panel

Recommendation Rationale: Team likes idea as an enabling technology but is cautious about low energy savings; potentially a quick ramp

Weighted Score	6.44
TSB	
Energy Savings	Low
Grid Benefits	High
GHG Impacts	Medium
MT Alignment	
Innovation Characteristics	4
Leverage Points	3
Sustained Benefits	3


IDEA-0022 Smart Home

Description

Smart home technology enables automation of certain appliances for increased capabilities, security, comfort, and convenience including products such as thermostats, lighting, refrigerators, and cooking appliances. In addition, these appliances can be connected to an overarching smart home energy management system which allows the customer to monitor their energy usage and make changes based on usage patterns.

Portfolio Priorities	
X	Equity
X	WE&T
	Energy Savings
	Grid Benefits
	GHG Reductions

IDEA-0022 Smart Home

Stage 1 Scoring Assumptions

Sector(s)	SF & MF residential
End Use(s)	Space & water heating, major appliances, plug loads, lighting
Decision Type(s)	Normal replacement & new construction
Baseline	Uncontrolled loads

Recommendation Rationale: No reason to exclude from advancing to Stage 2 but team is cautious about energy savings and level of control over home systems

Weighted Score	7.14
TSB	
Energy Savings	Medium
Grid Benefits	Medium
GHG Impacts	Medium
MT Alignment	
Innovation Characteristics	3
Leverage Points	3
Sustained Benefits	4

IDEA-0010 High Performance Windows

Description

High performance windows are windows that outperform code efficient windows by ~20% or more through the use of two or more panes of glass and /or the use of gases such as krypton or argon. This initiative would promote the top tier of ENERGY STAR rated products which typically requires a thin triple-pane window.

Portfolio Priorities	
	Equity
\boxtimes	WE&T
	Energy Savings
	Grid Benefits
	GHG Reductions

IDEA-0010 High Performance Windows

Stage 1 Scoring Assumptions

Sector(s)	SF & MF residential
End Use(s)	Envelope
Decision Type(s)	Normal replacement & new construction
Baseline	Retrofit: 60% single pane, 40% dual pane NC: code

Weighted Score	7.51		
TSB			
Energy Savings	Medium		
Grid Benefits	Low		
GHG Impacts	Medium		
MT Alignment			
Innovation Characteristics	4		
Leverage Points	4		
Sustained Benefits	5		

Recommendation Rationale: Already have a windows MTI in development

IDEA-0222 Residential Smart-Splitting Solutions

Description

Electric vehicle supply equipment (EVSE) technology family, addressing the issue of insufficient electrical panel capacity. Smart-splitting solutions enable multiple devices to utilize an existing 240v outlet to power multiple devices by managing the charge.

Portfolio Priorities		
	Equity	
	WE&T	
	Energy Savings	
	Grid Benefits	
	GHG Reductions	

IDEA-0222 Residential Smart Splitting

Solutions

Stage 1 Scoring Assumptions

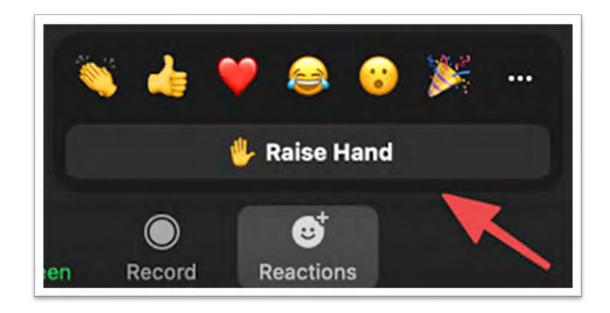
Sector(s)	SF residential
End Use(s)	Any 240V appliance end use such as clothes dryers, EV chargers, induction stoves, electric water heaters, AC
Decision Type(s)	Add-on equipment
Baseline	One 240V appliance only; potential for electrification; some load shifting

Recommendation Rationale: Cheap & easy solution but has a very narrow use; is not a comprehensive market transformation approach

Weighted Score	5.49		
TSB			
Energy Savings	Low		
Grid Benefits	Medium		
GHG Impacts	Medium		
MT Alignment			
Innovation Characteristics	5		
Leverage Points	2		
Sustained Benefits	2		

Questions & Discussion

MTAB Reactions to Recommended Top 5



Idea Name		"TSB" High	"TSB" High & MT Alignment
0085 Combination Heat Pumps		9.51	8.50
0218 Sustainable Outdoor Lighting		8.86	8.38
 0118 Very High Efficiency Dedicated Outdoor Air System (DOAS) 	6.51	8.56	7.00
0133 Thermal Energy Storage as a Distributed Energy Resource	6.60	8.17	6.87
0188 Reflective Insulation for Windows	7.09	7.48	6.21
0024 Variable Frequency Drives (VFDs) on all Pumps and Fans > 10 HP	7.32	7.45	7.21
0142 Agricultural Irrigation as a Flexible Demand Load	6.81	7.41	5.96
0193 Building Performance Standards (BPS) Accelerator		7.37	7.62
0080 Smart Electric Panels	6.44	7.28	6.08
0022 Smart Home	7.14	7.02	6.21
0010 High Performance Windows	7.51	6.14	6.96
0222 Residential Smart-Splitting	5.49	6.08	4.83

4. Public Comment

Raise your hand using the "Reactions" feature and we will allow you to unmute yourself.

Market transformation is a proven approach that works to remove market barriers so that energy efficient, equitable, and climate-friendly approaches become the new standard practice for all Californians.

Sign up for updates at: calmta.org/contact/

MTAB comment: calmta.org/mtab-comments/

Questions? Email info@calmta.org

Inkedin.com/showcase/calmta/