Calification 11/20/24 Market Transformation Advisory Board (MTAB) Meeting

> CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

Agenda Day 1: Nov. 20

Time	Agenda Item	Presenter	
12:00 p.m.	1. Welcome, Agenda, & Introductions	Stacey Hobart	
12:10 p.m.	2. COI Declarations & 10/25 Draft MTAB Notes	Stacey Hobart	
12:15 p.m.	3. An MT Portfolio for California	Lynette Curthoys	
12:25 p.m.	4. Summary of Room Heat Pump MTI	Elaine Miller	
12:55 p.m.	5. Room Heat Pumps: Total System Benefits & CE	Karen Horkitz, Matthew Wisnefske & Priya Sathe	
1:45 p.m.	Break (15 min)		
1:55 p.m.	6. Room Heat Pumps: Budget, Risks, & Discussion	Jeff Mitchell & Elaine Miller	
3:50 p.m.	7. Stage 2 Scoring & Prioritization of RFI Submissions	Rick Dunn & Jennifer Barnes	
5:20 p.m.	8. Public Comment (meeting guest can share publicly during this time)		
5:30 p.m.	Adjourn		

Safety minute

AED & First Aid Kit near Smart Energy Experience room

Exits on all sides of the building

Evacuation Gathering Destination

Restrooms

2 COI Declarations & MTAB Meeting Notes

Stacey Hobart Principal of Engagement & Communications

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

MTAB declaration of COI

MTAB Eligibility

Cannot receive funding from CaIMTA or be in pursuit of funding

Recusal Requirements

- Can't bid on RFP/RFQ if giving input after Phase I
- Those with competitive interest can recuse from discussion, but <u>must leave</u> MTAB if responding to RFP
- Agree not to influence remaining MTAB
- Interpretation, if needed, done by CPUC staff

Transparency

Public meetings & process where COI concerns can be raised by the public

MTAB Charter with

Conflict of Interest

CaIMTA COI policies

- CalMTA has robust COI policies to ensure decision-making is transparent, impartial, and unbiased
- RI employees and subcontractors, who function in decision-making roles, are firewalled from work with California utilities or other covered entities and sign COI certifications
- CalMTA seeks CPUC approval when draw on specialized expertise from subject matter experts who also support work with covered entities

Draft MTAB meeting notes:

<u>10/25</u>

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

3 An MT Portfolio for California

Lynette Curthoys Vice President, Market Transformation

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

Thank you MTAB & CaIMTA Team for the hard work & collaboration that launched CalMTA & delivered two draft MTI Plans in less than 24 months!

- Support California's bold decarbonization goals with solutions for existing homes that may not be designed for electrification
- Begin CalMTA's portfolio with products and interventions designed to bring the benefits of decarbonization to ESJ communities
- Offer substantial health, safety, and comfort non-energy benefits

- Share common points of leverage with retailers, programs, and electrification policies
- Take on barriers to large-scale residential decarbonization not
 easily addressed in the traditional EE portfolio
- Collaborate with entrepreneurial California companies to accelerate innovation and bring California-suitable products to market sooner

- Deliver substantial benefits over their 20-year life cycle
 - Over \$1.35B in statewide benefits to California
 - Over \$1.08B in benefits within the service area of the funding IOUs
- Are a cost-effective foundation for a future MT portfolio
 - 1.74 TRC
 - 10.79 PAC
 - 4.26/4.25 Base/High SCT

Require near-term investment to realize large-scale long-term benefits

Market deployment timeline

Next Steps for MTAB members

- Reviewed much of the MTI plans through the Idea to Initiative education campaign
- 2 Will have opportunities today to hear Part 3 on market forecasts and cost-effectiveness, ask questions, and discuss
- 3 MTAB members may provide feedback via a form that will be consolidated and appended to the plans as Appendix I
- 4 Public may comment during the application proceeding

4 Summary of Room Heat Pump MTI

Elaine Miller, Senior Strategy Manager

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

Room heat pumps: Where we are today

Complete

Current status

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

Room heat pump (RHP) technology

- Includes window, portable (dual hose), and through-the-wall form factors
- Variable speed
- Output at 8k -14k BtU/h for 400-1,000 ft²
- 120V plug-in
- Installs without certified HVAC technician or electrician, thus cheaper than alternative HP solutions

Supplemental heating or cooling for part of a single-family home

- Reduce usage of central systems and eliminate other plugin devices
- Multifamily heating and cooling
- Fully replace need of inefficient HVAC, especially those with inefficient electric systems

RHP market summary

Target market	Existing single- and multifamily housing
Who makes the product?	There are currently several large firms and small startups producing the product
Who buys the product?	Homeowners, residents, property managers or building owners, and Program Administrators (PAs)
Who uses the product?	Residential consumers who use window and room heaters and air conditioners, homeowners who want a partial solution and renters
How is product sold?	Directly through retailer or manufacturer websites
Who influences purchase decision?	Retailers, property managers are influenced by their perspective of consumer preferences for appliance types and fuel types

RHP Barriers

Electric bill Product impacts, Performance improvements metrics and especially for labeling needed for CA Higher ESJ misalignment market (form purchase communities and climate price nonwhen moving EE needs) Consumer from gas alternatives awareness Regulatory **Availability of** resistance **CA-suitable** to use of product **Iower GWP** refrigerants

commission and is administered by Resource Innovations

Opportunities, product features & leverage

New ENERGY

STAR label for

heating and

cooling modes,

new CEE spec

Public health and climate resilience benefits, overall push for heat pumps

And IRA funding New market entrants and national partners generating manufacturer momentum No skilled labor needed for installation and work with 120V outlets

> Provide both efficient heating and cooling yearlong

ESRPP program and data collection

CalMTA is a program of the California Public

23

Room Heat Pump MTI Plan

RHP: Theory of market change

Interventions

Manufacturer engagement, demand aggregation, policy engagement (refrigerants, electrification rates, E*)

Demand stimulation, program inclusion, awareness building, retail availability, product differentiation

E* adoption, air filtration capability, lower GWP, DR

Outcomes

- \rightarrow Availability of products for CA
- \rightarrow More consistent labeling
- \rightarrow Support for policy changes
- \rightarrow Awareness grows
- \rightarrow Market share grows
- \rightarrow Incremental cost to purchase and operate declines
- \rightarrow Availability of products for CA grows \rightarrow More consistent labeling
- \rightarrow Market share grows

Interventions: MTI primary market role

- I1: Tech Challenge with manufacturers and aggregated MF guaranteed purchase
- I2: Engage national collaborative on future ENERGY STAR specifications, possible federal test procedures, and further demand aggregation
- **I3:** Gather and share usage and bill impact data
- **I9:** Build market awareness of product benefits

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

 I6: Deploy midstream stocking incentives that motivate retailers to target ESJ communities with affordable RHPs

25

- I5: Support inclusion and bundling of RHPs with California programs
- I7: Support CA policy and standards setting bodies in use of lower GWP refrigerants through manufacturer engagement, lab testing and data sharing
- **I8:** Support advancement of electrification-enabling rate structures to mitigate bill impacts of moving from gas to electric heating

5

Room Heat Pumps: Total System Benefits & Cost-Effectiveness

Karen Horkitz Lead, Market Research and Evaluation

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

What we'll cover

Room Heat Pumps MTI

- TSB and cost-effectiveness overview
- Modeling overview
- Market adoption forecast
- Cost-effectiveness modeling
- Evaluation

TSB and cost-effectiveness 2024-2045

Test	TSB - Energy	TSB - Grid	TSB - GHG	TSB - Total
TRC	\$ 160M	\$ 30M	\$ 331M	\$ 521M
SCT	\$ 344M	\$ 68M	\$ 1,005M	\$ 1,417M

	TRC Ratio	PAC Ratio	SCT Ratio
With Negative IMCs	330.15	8.29	(30.24)
With Negative IMCs set to Zero	5.46	8.29	11.2

Cost-effectiveness calculations: Resource Acquisition vs. MT programs

Cost-effectiveness calculation elements	CA standard practice manual approach for RA programs	Approach for MTIs
Codes & standards savings	Excluded	Included for MTIs that are proposed to lead to a new code or standard
Timeframe of forecasted costs and benefits	Program funding period	MTI Lifetime ^a
Net-to-gross methodology	Net impacts = (Total units * unit energy impacts [UEI]) * NTG ratio [NTG Ratio = 1 – FR ratio + SO ratio + ME ratio]	Net incremental MTI impacts = [(TMA units – BMA units) * UEI] – utility verified impacts
Incremental costs	Typically remain static	Typically decline over time

30

MTI life cycle and lifetime

31

Forecasting approach

Market Adoption Forecast

Gouri Shankar Mishra Senior Associate, Cadmus

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

Baseline Market Adoption (BMA)

Total Market Adoption (TMA) Expected "naturally occurring" market adoption. Considers current and expected market, regulatory and technological trends.

Counterfactual adoption in absence of the MTI

Actual market uptake

Includes the additional adoption forecasted to result from strategic interventions described in this MTI plan.

Resource Acquisition (RA) Verified Units

Estimated verified adoption associated with RA program claims reported in CEDARS

Net Incremental Adoption

TMA - BMA - RA Verified Units

Estimated adoption

Proportion of existing households estimated to adopt room HP

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

35

Estimated adoption

Cumulative # of households estimated to adopt room HP

Net incremental adoption = TMA – BMA – verified RA units

	Units of RHP (thousands)							
	TMA	BMA	RA program verified		Net incremental		Non-IOU	Net - incremental net of non-IOU
Single- family	1,838	242	196		1,400		372	1,028
Multifamily	1,207	144	129		934		251	683
Total	3,045	386	386		2,334		623	1,711

Forecast Period: 2024-2045

Adoption estimation: Methods

Diffusion forecast using a s-curve model

Parameter for S-Curve

1. <u>Ultimate</u> level of adoption (long term, may be beyond the forecast period).

2. Year with *highest rate of* <u>adoption</u>. Adoption rate decreases after this point.

3. Steepness of the s-curve; <u>speed of adoption</u>.

Estimating model parameters in the baseline (BMA) and in presence of the MTI (TMA)

Inputs for BMA

- → Market research
- \rightarrow Literature review
- → Expert judgement

Inputs for TMA

MTI Plan: Interventions and Milestones

Estimation of S-Curve parameters: Maximum market potential

Step 1: Segment population

Household type: MF or SF
 Current HVAC system
 Urban or rural?
 Own or rent?

Step 2: Estimate potential for each segment

What proportion of households in each segment will eventually adopt RHP?

Example: Urban dwelling owners

Table: Estimated potential - Urban HHs Owners		
Primary Equipment Type for Heating and/or Cooling	# of househ	olds in 2022
		Single-
	Multifamily	family
1. Electric Resistance Heating (Zonal)	81	261
2. Electric Central Furnace (Ducted)	14	181
3. Gas, oil or wood stoves (Zonal)	-	378
4. Central HP and/or Mini splits	28	183
5. Central Gas Furnace without any cooling and not counted above in #1 to #4	33	1,049
Central Gas Furnace AND Central Cooling and not counted in #1 to #5	73	3,489
7. Window/Wall/Portable AC and not counted above in #1 to #6	15	224
8. No heating or cooling	27	200
9. Central cooling without any heating and not counted above in #1 to #8	46	115
10. Other households	-	86
Total	316	6,166

Estimation of S-Curve parameters: Maximum market potential

Key assumptions in the baseline (BMA)

Key assumptions in the presence of the MTI (TMA)

- Overall higher potential relative to baseline
- Higher potential in rental units

Estimation of S-Curve parameters: Maximum market potential

Estimated potential – proportion of existing households

	SF	MF
Baseline (BMA)	13%	19%
In presence of the MTI (TMA)	24%	38%

Note: The numbers in the table represent maximum market potential and not estimated market adoption.

Estimation of S-Curve parameters: Year of Inflection

Difficult to estimate Year of Inflection

- Difficult to estimate Year of Inflection
- Instead estimate
 - Year of take-off
 - Year of saturation

Estimation of S-Curve parameters: Year of Inflection

Assumption: Inflection is mid-point of take-off and saturation

Year of take-off

	Assumption	Source
BMA	2037	Market Research
TMA	2029	MTI Plan Milestones

Saturation

	Assumption	Source
BMA	2067	SMEs / Delphi
TMA	2053	MTI Interventions; CalMTA assumptions

Year of Inflection

Mid-point of take-off and saturation

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

Room Heat Pump MTI Plan

Estimation of S-Curve parameters: Rate of growth

	Assumed values	Source
BMA	0.1	Inputs from Delphi Panel and literature review
TMA	25% higher	Based on planned interventions in the MTI plan; literature review

Adoption Forecast: Estimate # of units adopted

	Units of RHP (thousands)							
	TMA	BMA	RA program verified		Net incremental		Non-IOU	Net - incremental net of non-IOU
Single- family	1,838	242	196		1,400		372	1,028
Multifamily	1,207	144	129		934		251	683
Total	3,045	386	386		2,334		623	1,711

Forecast Period: 2024-2045

Room Heat Pump MTI Plan

Break (15 min) We will be back soon.

Cost-Effectiveness Modeling

Matt Wisnefske Senior Associate, Cadmus

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

Total System Benefit

- Adopted by the CPUC in 2024
- Composed of life cycle energy, capacity, and greenhouse gas benefits
- Designed to measure the total value to the electric and natural gas systems

Cost-effectiveness tests

Total Resource Cost Test

Program Administrator Cost Test

Societal Cost Test

- Energy system perspective
- Includes initiative costs and incremental measure costs
- MTI administrator perspective
- Includes initiative costs and incentive costs
- California-as-a-whole perspective
- Includes initiative costs and incremental measure costs
- Includes more GHG value and lower discount rate

Replacement scenarios

Segment	Counterfactual equipment	Efficient equipment	Decision type	First-year IMC
MF / SF	Room AC + electric resistance heat	Window Heat Pump	Replacement	\$245
MF / SF	Room AC + gas wall furnace	Window Heat Pump	Replacement	(\$598)
MF / SF	Portable AC + electric resistance heat	Portable Heat Pump	Replacement	(\$180)
MF / SF	Portable AC + gas wall furnace	Portable Heat Pump	Replacement	(\$1,023)
Single-family	Room AC + electric resistance heat	Window Heat Pump	Displacement	\$481
Single-family	Portable AC + electric resistance heat	Portable Heat Pump	Displacement	\$56
MF / SF	No cooling + central gas furnace	Window Heat Pump	No cooling	\$890
MF / SF	No cooling + central gas furnace	Portable Heat Pump	No cooling	\$586

Cost-effectiveness methodology - inputs and assumptions

53

dea to **initiative**

Technology definition inputs

Unit Energy Savings	 Savings determined by energy modeling using DOE data Both in terms of Electricity (kWh) and Natural Gas (Therms) Can be negative if there is fuel substitution (through electrification)
Incremental Measure Costs	 Determined by California retailer price data collected in 2024 Can be negative if a Room Heat Pump is less costly than two other technologies combined (such as a Room AC and a Gas Wall Furnace)
Load shape	 Probability that a technology is in use in every hour of the year (8,760) Based on DEER database using multiple California Residential HVAC profiles
Effective useful	 Number of years a technology is expected to be used after

installation before failure or replacement

Room Heat Pumps get 9 years per California eTRM values

Room Heat Pump MTI Plan Room Heat Pump MTI Plan

life

Program/Regulatory inputs

Avoided costs	 Value of reduced energy consumption in every hour of the year (8,760) Composed of Energy, Grid, and Greenhouse Gas avoided costs
Discount rate	 Used to discount future costs and benefits to 2024 values 7.3% for TRC and PAC, 3% for SCT
SCT adders	 Additional benefits based on Social Cost of Carbon (both high and base cases) Additional methane leakage benefit
MTI lifetime	 Number of years that the initiative will run in California Phase III runs from 2026 through 2045
Initiative costs	 Costs incurred by California MTA when running the initiative Includes administration, research and evaluation, marketing, and incentives Costs are largely front loaded in the first few years of the initiative

TSB and cost-effectiveness 2024-2045

Test	TSB – Energy	TSB – Grid	TSB – GHG	TSB – Total
TRC	\$ 160M	\$ 30M	\$ 331M	\$ 521M
SCT	\$ 344M	\$ 68M	\$ 1,005M	\$ 1,417M

	TRC Ratio	PAC Ratio	SCT Ratio
With Negative IMCs	330.15	8.29	(30.24)
With Negative IMCs set to Zero	5.46	8.29	11.2

Cost-effectiveness "schedule"

Forecasting metric	2030	2035	2045	
TSB	\$ 5M	\$ 79M	\$ 521M	
TRC ratio (adjusted)	0.13	1.21	5.46	
PAC ratio	0.12	1.28	8.29	
Estimated incremental investment	\$ 36.4M*	\$ 21.5M	\$ 1.2M	
Approximate breakeven year for TRC: 2034				

*Phase III 2026-2030 investment

TSB and Cost-Effectiveness: Statewide impacts included

Forecasting Metric	Net Incremental Impacts (IOU territory only)	Net Incremental Impacts (statewide)
TSB	\$ 521M	\$ 640M
TRC Ratio	330.15	(36.25)
TRC Ratio (adjusted)	5.46	5.90
PAC Ratio	8.29	10.18

CaIMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

MTI Evaluation Plan

Karen Horkitz Lead, Market Research and Evaluation

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

Evaluation approach overview

Unambiguous MTI progress and impact goals & metrics established at time of adoption, with data collection plan that substantiates MTI evaluability

Theory-based evaluation (TBE) Clear program theory, logic models, & associated market progress indicators as foundation to establish market influence, progress, & causal impact of MTI interventions

Data-driven, transparent analysis methods to estimate market diffusion, cost-effectiveness, & incremental impact

Use of widely accepted best practices to develop & refine baseline market adoption forecast

Agreed upon methodology to determine MTI incremental impact that supports California's policy goals, statewide collaboration, & decisions about future MT investments

Evaluation objectives

Monitor market dynamics and characteristics; assess market developments

Review and assess the MTI logic model and program theory

Measure market progress and equity, per the MPIs

Assess MTI causality per the logic model

Identify opportunities to adjust MTI strategy and tactics, to improve MTI effectiveness

Review baseline and total market adoption forecasts, TSB and cost-effectiveness model inputs and assumptions

Assess ancillary benefits and costs

Key Market Progress Indicators

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

Estimating units of adoption

RHP milestones

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

RHP milestones (cont.)

6 Room Heat Pumps: Budget, Risks & Discussion

Elaine Miller, Senior Strategy Manager Jeff Mitchell, Principal of MT

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

Phase III budget

Activity	Total Phase III cost estimate
 Program Implementation including the following line items: 1. MTI oversight, strategy and management 2. Marketing & Awareness building 3. Policy development and support 4. Supply chain engagement 	\$29,458,000
Market Research including the following line items: 1. Market research 2. Data collection	\$2,850,000
Mid/upstream incentives include those to retailers	\$17,750,000
Downstream incentives includes those to consumers	\$5,250,000
Program evaluation	\$3,820,000
Total	\$59,128,000

- Will we be able to create a large enough demand aggregation signal for manufacturers?
- Will manufacturers produce an affordable product that meets the needs of California windows types and climate?
- Can CalMTA get market to overcome product labeling challenges?
- Inclusion in California programs
- Electrification rates in California

Why this? Why now for California?

- Fills a critical Heat Pump product gap to help California reach 6M HP Challenge
 - 120V capability and electrical infrastructure challenges, especially for MF
 - Affordable HP option for MF and small residential, ESJ communities
- Leverages and builds upon new market entrants and national momentum
- Future product will provide additional benefits
 - Air filtration capability improving IAQ
 - Use of lower GWP refrigerants
 - DR capability
- Clear role, timing, and MT Theory for CalMTA

Discussion

- Bright spots and possible challenges
- Questions of clarity for CalMTA
- Questions for other MTAB members
- Other feedback

7 Stage 2 Scoring & Prioritization of RFI Submissions

Rick Dunn, Senior Manager of ET Jennifer Barnes, 2050 Partners

CalMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

Today's objectives

1

Review Stage 2 scores

Gather MTAB feedback and input

Scoring process overview

Threshold Review	Stage 1	Stage 2				
Does it save energy? Is it commercially available? Is there enough information to be scored?	Scores based on expertise and easily accessible information	Scores based on estimated TSB & cost- effectiveness Stage 1 scores updates as needed				
Sept 2024 Today						

RFI scoring criteria

Category	Criteria
Total System Benefit (TSB)	Energy TSB
A single metric that encompasses energy savings, grid benefits and reliability, and	Grid benefits TSB
GHG impacts (Stage 2)	GHG impacts TSB
Product readiness An indicator of the supply chain maturity/product availability	Readiness
Participant cost/cost-effectiveness Assesses the overall estimated cost of the MTI against its benefits	Participant cost (Stage 1) PAC & TRC (Stage 2)
ESJ impacts (equity)	Beneficial impacts to ESJ communities
leverage existing community resources in its execution	Partnership opportunities with ESJ communities
Non-energy impact Captures the benefits or impacts (in addition to energy savings and greenhouse gas emissions reductions) that the MTI will deliver	Non-energy impacts
MT alignment	Innovation characteristics
Ensures MTI aligns with key aspects of MT theory; presents a strong MT	Leverage points
opportunity	Sustained benefits

Top-ranked ideas: Stages 1 & 2

Stage 1

- Multifunction Heat Pumps
- Sustainable Outdoor Lighting
- Very High Efficiency DOAS
- Thermal Energy Storage as a DER
- Reflective Insulation for Windows
- VFD on all pumps & fans >10 HP
- Agricultural Irrigation
- BPS Acceleration
- Smart Electric Panels
- Smart Home
- High Performance Windows
- Residential Smart-splitting

Multifunction Heat Pumps

Stage 2

- VFD on all pumps & fans >10 HP
- BPS Acceleration
 - + Efficient Streetlights

Disclaimers

- TSB values were developed for Stage 2 scoring and selection.
- They are directional estimates to be used to rank and compare the relative value of each idea.
- They are preliminary estimates and are not intended to represent a level of achievable TSB.
- These values are statewide estimates and include IOU attribution.

Scoring summary: Stages 1 & 2

ldea #	Idea name	Stage 1	Stage 2
0085	Multifunction Heat Pump	8.11	8.11
0193	Building Performance Standard Acceleration	7.30	7.22
0105	Efficient Streetlights	7.21	6.92
0024	VFDs on all pumps and fans >10 HP	7.32	6.82

0085: Multifunction Heat

Pumps

Description

Two- or three-way residential heat pump systems that generate hot water for domestic consumption and provide space heating only (two-function) or both space heating and cooling (three-function), within the same system using a single compressor.

Enables

- Energy efficiency; significant GHG reductions over gas systems
- Accelerated multifamily sector electrification
- Could support the transition to ultra-low GWP or natural refrigerants

CaIMTA is a program of the California Public Utilities Commission and is administered by Resource Innovations

Typical residential configuration:

- Single outdoor heat pump serving:
 - Air handler for space conditioning
 - Hot water tank for water heating
- Separate loop of refrigerant lines for air handler and hot water tank

Figure 1: Air-to-Air Multi-Function Heat Pump system diagram showing the outdoor unit and refrigerant lines serving both the air handler and the indoor hot water tank.

Source: Adapted from original image provided by Villara

ET22SWE0021 Residential Multi-Function Heat Pumps: Product Search Final Report

10

Challenges

- Currently less efficient than competing single-function HP and HPWH technologies
- Identification and optimization of a single refrigerant for combined space conditioning + water heating
- Space cooling (AC) functionality is still emerging technology

Potential MT strategies

- Drive technology advancement for better integration of space cooling and optimization of MF form factors
- Support transition to low-GWP refrigerants
- Leverage reduced need for electric panel upgrades for whole house electrification

Adoption of multifunction heat pumps

TSB	TSB	TSB	TSB	Stage 1	Stage 2
Electric	Grid	GHG	Total	Score	Score
\$351M	\$618M	\$1,199M	\$2,354M	8.11	8.11

- Program budget: \$58M
- PAC: 60.98
- TRC: 1.25

Hold up one of the three color cards to indicate your reaction.

Description

Strategies and tools to facilitate building-owner compliance with policies and laws aimed at reducing energy use intensity (EUI) and GHG emissions of the built environment; most commonly applies to buildings >20,000 ft², including commercial, industrial, municipal and multifamily properties.

Enables

- Energy efficiency; GHG reductions
- Leverage point for other market transformation activities

- ~45 states/jurisdictions have implemented or are developing BPS
- CEC oversees CA statewide benchmarking
- BPS implemented in Chula Vista:
 - 2023: ≥ 50,000 ft²
 - 2026: ≥ 20,000 ft²
 - Policy metric: EUI
 - Goal: 57% GHG reduction by 2030
- Statewide BPS in Colorado, Maryland, Oregon, and Washington:
 - Goal: 90-100% GHG reduction by 2050

Source: DOE EERE Building Energy Codes Program (Updated 4/29/24)

Challenges

- Often requires large financial investment by building owners
- Some owners may opt to pay the fine rather than upgrading infrastructure
- Different jurisdictions will have different building stock, goals and challenges
- Accelerator hubs, to date, have had limited success driving compliance

Potential MT strategies

- Accelerate re-commissioning to rapidly optimize building performance before assessing capital improvements
- Leverage emerging "zero-over-time" strategies to align BPS compliance timeline with existing capital improvement schedules
- Create additional support for buildings in ESJ communities that may be less efficient than other areas

Adoption of BPS

TSB	TSB	TSB	TSB
Flectric	Grid	GHG	Total
\$148M	\$223M	\$195M	\$566M

Stage 1	Stage 2
Score	Score
7.30	7.22

- Program budget: \$54M
- PAC: 12.67
- TRC: 1.35

Hold up one of the three color cards to indicate your reaction.

0105: Efficient Streetlights CalMTA

Description

Efficient, well-designed streetlighting systems with controls

Enables

- Energy efficiency; GHG reductions
- Grid flexibility
- "Smart City" interaction with other city systems

Control and dimming strategies

- Often aligned with size and sophistication of jurisdiction
- Simple dimming
- Traffic pattern dimming
- Adaptive or "Smart City" control

Challenges

- Lack of awareness of efficient options and smart controls
- Limited knowledge of advanced control strategies, capabilities, and design
- Financial barriers associated with retrofits
- Different ownership models

Potential MT strategies

- Smart controls are widely developed and proven
- Drive upgrades through outreach, education, and toolkits
- Develop means for jurisdictions to capture all the financial benefits
- Strategies to support streetlight municipalization

Adoption of efficient streetlights

Stage 1	Stage 2
Score	Score
7.21	6.92

- Program budget: \$9M
- PAC: 20.93
- TRC: 0.80

Hold up one of the three color cards to indicate your reaction.

Description

Installation of VFDs on commercial and industrial pumps and fans >10HP, which allow reduced speed and energy consumption during periods of low loads; can be combined with advanced motors for additional efficiency gains

Enables

• Energy efficiency; GHG reductions

- Average VFD operating point from DOE/LBNL study: ~55% of full load.
 - 20HP pump power reduced from 12 to 3 • kW

- Existing control is typically a throttling valve (for lacksquarepumps) or outlet damper and inlet guide vanes (for fans); motor runs at full power
- Power to speed relationship with VFDs is cubic
 - Small decrease in speed yields a large decrease in power

Average operating point

Challenges

- Replacement market has strong like-for-like preference; risk-averse
- Industrial opportunities require advanced process controls
- Energy costs are not easily visible and/or not considered significant cost-control opportunities in many C&I applications
- Slow ramp in other MT programs

Potential MT strategies

- Industry collaborations (e.g., Hydraulic Institute) to educate market about benefits and low risk technologies
- Develop value proposition around reduced unplanned downtime, lower maintenance and increased product life rather than energy savings
- Workforce development to address complexity of installations and reduce installation costs

Adoption of VFDs on pumps and fans

TSB	TSB	TSB	TSB	Stage 1	Stage 2
Electric	Grid	GHG	Total	Score	Score
\$195M	\$83M	\$284M	\$562M	7.32	6.82

- Program budget: \$35M
- PAC: 22.29
- TRC: 8.30

Hold up one of the three color cards to indicate your reaction.

Estimated TSB, TRC, and PAC

		Preliminary			
Idea #	Idea name	TSB (\$M)	TRC	PAC	
0085	Multifunction Heat Pump	2,354.1	1.25	60.98	
0193	BPS Acceleration	566.4	1.35	12.67	
0105	Efficient Streetlights	256.8	0.80	20.93	
0024	VFDs on all pumps and fans >10 HP	562.4	8.31	22.29	

Breakout group: What makes a good MTI?

- The unique value of MT is to over time identify and overcome structural barriers that (1) impede adoption of a given technology or practice and (2) can't be adequately addressed through other mechanisms (i.e., incentives)
- Priorities for advancing ideas to Stage 2: High TSB and ramp rate

Breakout group: What makes a good MTI?

- Additional considerations in Stage 2 may include:
 - MT alignment must be a good MT opportunity; should have a vision for how the market will respond to interventions and how savings will be locked-in
 - Equity not all ideas have a strong equity component, but this can tip the scales
 - Incremental value where can CalMTA add maximum incremental value to California's efficiency and decarbonization efforts

Batch 3 breakout groups

Step 1: Breakout group discussions

- CaIMTA staff will assign MTAB members into three breakout groups
 - Teams should assign one member as the note-taker and one as the spokesperson
- Groups discuss each of the five ideas, identifying the pros, cons, and dealbreakers of including each idea to the CalMTA portfolio

Step 2: Team presentations

• Each spokesperson will present and defend their team's top-three pros, topthree cons, and any dealbreakers

6. Public Comment

Raise your hand using the "Reactions" feature and we will allow you to unmute yourself.

Transformative Energy Solutions for the public good

Market transformation is a proven approach that works to remove market barriers so that energy efficient, equitable, and climate-friendly approaches become the new standard practice for all Californians.

Sign up for updates at: <u>calmta.org/contact/</u> Questions? Email <u>info@calmta.org</u> Follow us at <u>linkedin.com/showcase/calmta/</u>